Near-infrared double negative metamaterials
نویسندگان
چکیده
منابع مشابه
Near-infrared double negative metamaterials.
We numerically demonstrate a metamaterial with both negative epsilon and negative mu over an overlapping near-infrared wavelength range resulting in a low loss negative-index material. Parametric studies optimizing this negative index are presented. This structure can be easily fabricated with standard semiconductor processing techniques.
متن کاملDesign of Dual-Band Double Negative Metamaterials
A dual-band artificial magnetic material and then a dual-band double-negative metamaterial structure based on symmetric spiral resonators are presented. An approximate analytical model is used for the initial design of the proposed structures. The electromagnetic parameters of the proposed metamaterial structure retrieved using an advanced parameter retrieval method based on the causality princ...
متن کاملNear-infrared metamaterials with dual-band negative-index characteristics.
Dual-band negative-index metamaterial designs in the near-infrared frequency range are presented and their performance is analyzed using a full-wave numerical electromagnetic scattering method. Negative effective permittivity is provided by a thin layer of metallic film. Negative effective permeabilities are supplied in two distinct frequency bands by magnetic resonators of different dimensions...
متن کاملExperimental demonstration of near-infrared negative-index metamaterials.
Metal-based negative refractive-index materials have been extensively studied in the microwave region. However, negative-index metamaterials have not been realized at near-IR or visible frequencies due to difficulties of fabrication and to the generally poor optical properties of metals at these wavelengths. In this Letter, we report the first fabrication and experimental verification of a tran...
متن کاملMultiscale Methods for Engineering Double Negative Metamaterials
The approach taken here solves the Maxwell equations inside metamaterial crystals directly and explicitly with no approximations made. The Bloch wave solution and dispersion relation is given by a power series in the ratio between wave number and period. Each term is iteratively defined by the solution of an auxiliary problem depending on the configuration and shapes of the scatterers. The lead...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2005
ISSN: 1094-4087
DOI: 10.1364/opex.13.004922